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Abstract

The paper concerns a computational and experimental study of fully developed laminar ¯ow of a Newtonian liquid through an

eccentric annulus with combined bulk axial ¯ow and inner cylinder rotation. The results are reported for calculations of the

¯ow®eld, wall shear stress distribution and friction factor for a range of values of eccentricity e, radius ratio j and Taylor number

Ta. For fully developed ¯ow the radial/tangential motion is decoupled from the axial component of velocity. However, the axial

component of velocity is directly a�ected by the radial/tangential velocity ®eld and rotation of the inner cylinder is found to have a

strong in¯uence on the axial velocity distribution, ultimately leading to two maxima in the case of a highly eccentred inner cylinder

at high rotation speeds, a feature not reported hitherto. This in¯uence of rotation on the axial velocity is mirrored in the behaviour

of the shear stresses on the inner and outer cylinder walls and hence on the friction factor. An unexpected result is that (at ®xed

Reynolds number) as the Taylor number is increased the friction factor for high values of e�> 0:9� increases rather than decreas-

es. Ó 2000 Elsevier Science Inc. All rights reserved.
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Notation

DH hydraulic diameter 2d
e displacement of inner cylinder axis

from outer cylinder axis (m)
f Fanning friction factor ÿ�d=qU 2��op=oz�
f0 value of f for x � 0
g gap width (A, B, C or D)
p pressure (Pa)
�p non-dimensional pressure pd=lxRI

Q azimuthal ¯owrate (m3/s)
r radial distance from axis of inner cylinder (m)
�r non-dimensional value of r, r=d
RI outer radius of inner cylinder (m)
RO inner radius of outer cylinder (m)
Re bulk axial Reynolds number 2qUd/l
Ro rotational Reynolds number qxR2

I /l
T rotational Reynolds number qxRId/l
Ta Taylor number (qx/l)2RId3

TaC critical Taylor number
Ta0 value of TaC for e � 0
u axial component of velocity (m/s)

�u non-dimensional value of u, u/U
umax peak value of u in any sector

of the annulus (m/s)
U bulk axial velocity (m/s)
v tangential component of velocity (m/s)
�v non-dimensional value of v, v/xRI

w radial component of velocity (m/s)
�w non-dimensional value of w, w/xRI

y distance from outer wall
of inner cylinder (m)

�y non-dimensional value of y, y=d
z axial distance (m)
d mean annular gap width RO ÿ RI (m)
e eccentricity e/d
j radius ratio RI/RO

l ¯uid dynamic viscosity (Pa s)
q ¯uid density (kg/m3)
r non-dimensional distance from wall

of inner cylinder y/g
sSI

axial component of shear stress on the surface
of the inner cylinder (Pa)

sSO
axial component of shear stress on the surface
of the outer cylinder (Pa)

/ azimuthal location with respect
to inner cylinder

w stream function (m3/s)
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1. Introduction

In the absence of inner cylinder rotation, the e�ect of ec-
centricity e on fully developed laminar ¯ow of a Newtonian
¯uid through an annulus is to produce a ¯ow in which the peak
velocity increases progressively with azimuthal location / from
the narrowest to the widest part of the annulus. The calcula-
tions of Tiedt (1966, 1967), as partially reported by Shah and
London (1978), show that for a given radius ratio j, this
change in the velocity distribution u�r;/� leads to a monotonic
decrease in f � Re with e, where f is the Fanning friction factor
and Re the bulk Reynolds number.

The ¯ow generated in an annulus due to rotation of the
inner cylinder in the absence of bulk axial ¯ow is one of the
most widely investigated topics in ¯uid mechanics. Of the
hundreds of papers published to date, the majority have been
concerned with the Taylor vortices which arise above a critical
Taylor number TaC. Lockett (1992) showed that the occur-
rence of Taylor vortices is inhibited by eccentricity of the inner
cylinder, his numerical calculations being con®rmed by the
recent experimental work of Escudier and Gouldson (1997) as
well as by earlier experiments reported by Kamal (1966), Cole
(1968), Vohr (1968) and Castle and Mobbs (1968). The ¯ow
separation and the recirculating eddy or vortex which occurs
above a critical eccentricity for a given radius ratio have also
received widespread attention (Kamal, 1966; Ballal and Rivlin,
1976; San Andres and Szeri, 1984; Ho Tung et al., 1993;
Siginer and Bakhtiyarov, 1998). As we shall show, although
this radial/tangential motion is independent of the axial com-
ponent of velocity, it has a very strong in¯uence on the axial
velocity distribution when there is a bulk axial ¯ow, particu-
larly for the case of high eccentricity.

Relatively little has been published for bulk axial ¯ow
through an annulus with both eccentricity and rotation of the
inner cylinder which is the subject of the present paper.

Takeuchi and Jankowski (1982) and Lockett (1992) have
demonstrated that the onset of Taylor vortices is delayed to
higher Taylor numbers by bulk axial ¯ow and we limit our-
selves here to subcritical ¯ows. The recent numerical work of
Manglik (1998) and the analytical, numerical and experimental
study of Ooms and Kampman-Reinhartz (1996), primarily

Fig. 1. Annulus geometry and computational grid 3 (40 ´ 256 cells) for

radius ratio j � 0:5 and eccentricity e � 0:5.

�w non-dimensional stream function w/Q
x angular velocity of inner cylinder (rad/s)

Fig. 2. Comparison between calculated and measured axial velocity

distributions �u�r� for Reynolds number Re � 105 and no rotation with

increasing eccentricity: (a) e � 0:2; (b) e � 0:5; (c) e � 0:8. n Sector A;

d Sector B; s Sector C; r Sector D.
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concerned with the in¯uence of rotation and eccentricity on the
frictional pressure drop in annular ¯ow, are the closest we are
aware of to the present work and we shall refer to their results
later in the paper. Another recent paper by Meuric et al. (1998)
discusses a numerical study of the ¯ow of both Newtonian and
viscoplastic ¯uids in an eccentric annulus with inner cylinder
rotation which leads to results for the former case consistent
with those presented here.

In non-dimensional cylindrical coordinates centred on the
axis of the inner cylinder, the equations to be solved for fully
developed ¯ow are
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subject to the boundary conditions

�u � �v � �w � 0 on the outer cylinder;

�w � 0; �v � 1; �u � 0 on the inner cylinder:

The non-dimensional variables are de®ned by

�w � w
xRI

; �v � v
xRI

; �u � u
U
; �r � r

d
; �p � pd

lxRI

;

and the parameters T, f and Re by

T � qxRId
l

; f � ÿ d
qU 2

op
oz
�i:e: Fanning friction factor�;

Re � 2qUd
l

:

For consistency with previous work, we shall present the
results in terms of the Taylor number Ta rather than T where

Ta � qx
l

� �2

RId
3 � dT 2

RI

� 1

j

�
ÿ 1

�
T 2

with

j � RI

RO

and d � RO ÿ RI:

As is evident, the equations for �v and �w for fully developed
¯ow are independent of �u and in principle can be solved sep-
arately. An outline of the method used to carry out the nu-
merical calculations is given in Section 2. In Section 3 we
report on comparisons with the analytical f � Re values of Ti-
edt (1966, 1967) and the numerical calculations of Manglik
and Fang (1995) for the situation of no inner cylinder rotation.
The code is also validated against the experimental data of
Escudier and Gouldson (1997) for bulk ¯ow both with rotation
and with no rotation of the inner cylinder. In Section 4 of the
paper we present the results of extensive numerical calculations

for the in¯uence on fully developed ¯ow through an annulus of
radius ratio j, eccentricity e and Taylor number Ta.

Although this paper is concerned with the ¯ow of a New-
tonian ¯uid, the practical motivation for the work is its rele-
vance to the ¯ow of drilling mud in an oil or gas wellbore
during drilling operations. The mud is pumped down the ro-
tating drillpipe and returned to the surface mud pit through
the annulus between the drillpipe and the wellbore wall. The
drilling mud has to satisfy several di�erent requirements, in-
cluding cooling and lubricating the drillbit, cleaning the
workface, carrying drilled cuttings to the surface, preventing
ingress of formation ¯uids into the wellbore, and preventing
wellbore collapse. As a consequence of the multiplicity of
operational requirements, the rheology of a drilling mud is
generally non-Newtonian in character (Alderman et al., 1988):
almost invariably shear thinning, and often exhibiting visco-
elastic and thixotropic properties as well as a yield stress. In
addition to the complex rheological nature of the liquid itself,
drilling mud is usually contaminated by rock cuttings and
formation ¯uids. Operational constraints in wells of great
depth or extended reach, particularly the need to limit mud
pressure to avoid fracturing the rock surrounding the bore-
hole, often restrict the ¯ow of a drilling mud in the annulus
(usually eccentric to an uncontrolled and unknown extent) to
the laminar regime (Ooms and Kampman-Reinhartz, 1996).
Such ¯ows thus represent a relatively rare example of laminar
¯ows with major industrial relevance. It is also the case that
the length-to-diameter ratio of a wellbore more than warrants
the assumption of fully developed ¯ow. The radius ratio of
0.506 adopted in the experimental work of Escudier and Go-
uldson (1997), against which we partially validate our nu-
merical calculations, is typical of conventional drilling.

2. Outline of the numerical procedure

The continuity and momentum equations for three-
dimensional, incompressible Newtonian ¯uid ¯ow were

Fig. 3. Comparison between computed ratio of friction factors with

and without rotation f/f0 and experimental data of Ooms and

Kampman-Reinhartz (1996) (ÐsÐ) for radius ratio j � 0:5 and ec-

centricity e � 0:5. Calculations of Ooms and Kampman Reinhartz

(ÐxÐ).
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Fig. 4. Comparison between calculated and measured velocity distributions for Taylor number Ta� 3000 and increasing eccentricity: (a) axial

velocity component �u�r�; (b) tangential velocity component �v�r�; (i) e � 0:2; (ii) e � 0:5; (iii) e � 0:8. Symbols as for Fig. 2.

Table 1

Reynolds and Taylor numbers for experiments of Escudier and Gouldson (1997)

Figure no. e Re Ro Ta U/xRI

4(a) (i) and 4 (b) (i) 0.2 105 55 2700 1.00

4 (a) (ii) and 4 (b) (ii) 0.5 115 47 3000 1.03

4 (a) (iii) and 4 (b) (iii) 0.8 120 56 2900 1.08
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transformed into a general, non-orthogonal coordinate system
for calculating the Cartesian velocity components. These
equations were then discretised following the ®nite-volume
approach of Patankar (1980), but adapted for collocated, non-
orthogonal grids, as described in Peric (1985) and Oliveira
(1992). The calculations were carried out using a second order
central di�erencing scheme and the deferred correction ap-
proach was used in order to ensure numerical stability for the
convective terms. The solution algorithm was a modi®ed ver-
sion of the SIMPLEC algorithm of van Doormal and Raithby
(1984) adapted for time marching as explained in Issa and
Oliveira (1994) where details can be found of the particular
procedure used to evaluate mass ¯uxes at cell faces.

The coordinate system was centered at the inner cylinder
axis and the three-dimensional annular geometry represented
by 16 structured blocks around the annulus. A cross section of
the annular geometry and the grid arrangement for a typical
numerical calculation are shown in Fig. 1. Since the fully de-
veloped ¯ow condition was of concern here, only one row of
cells (�DH in length) was needed in the axial direction and the
procedure of Patankar and Spalding (1972) was adopted to
correct the axial pressure gradient o�p=o�z. A systematic grid
re®nement study was performed using three progressively ®ner
uniform grids: 10 ´ 64, 20 ´ 128 and (as shown in Fig. 1)
40 ´ 256. These grids were uniform in the sense that at each
angular position the radial width of the cells was constant and
at each radial position the angular width was also constant.
The solutions produced using the three meshes were then im-
proved by two successive applications of Richardson's ex-
trapolation technique (Ferziger, 1983), which produced fourth
order accurate values for f � Re.

In the concentric case the calculated values of f � Re are
within 0.005% of the exact (analytical solution) values. For the
eccentric situation there is no complete analytical solution 1

but an indication of the numerical uncertainty was achieved by
comparing the results of calculations for both e � 0:5 and
e � 0:95 with those estimated by applying Richardson's ex-
trapolation three times, i.e. using results from the three meshes
and a fourth ®ner grid, the result of which is here assumed to
represent the exact value. This procedure resulted in discrep-
ancies in f � Re of 0.05% and 0.002%, respectively. We assume
that for all cases considered here the application of Richard-
son's extrapolation technique to identical levels provides sim-
ilarly accurate approximations to the exact value.

3. Code validation

As can be seen from Fig. 2, the results of calculations for
e � 0:2, 0.5 and 0.8 and j � 0:506 for zero rotation of the
inner cylinder are in excellent agreement with the velocity-
pro®le data of Escudier and Gouldson (1997) obtained using a
high-precision laser Doppler anemometer (LDA).

The mass ¯owrate used to determine the value of U for the
normalisation of the experimental velocity distributions was
measured independently and required minor corrections (be-
tween 1.4% and 4.2%) to ensure that overall mass conservation
was satis®ed. Uncertainties in the locations of the inner cyl-
inder and the LDA probe volume necessitated corrections of
between 0.1 and 1.0 mm to the gap width to ensure that the
measured velocity distribution correctly approached the ve-
locity of the inner cylinder. The calculated results are indis-

1 Ooms and Kampman-Reinhartz (1996) give an analytical solution

based on a perturbation analysis which is restricted to small values of

the perturbation parameters but which demonstrates the crucial role of

inertia in annular ¯ows with centrebody rotation.

Fig. 5. Variation of frictional pressure loss f � Re with eccentricity e for

increasing Taylor number Ta (parameter on curves) and radius ratio j:

(a) j � 0:2; (b) j � 0:5; (c) j � 0:8.
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tinguishable from those of Manglik (1996) which are based
upon the numerical solutions reported by Manglik and Fang
(1995) for the fully developed ¯ow equations. We conclude
that for the situation without rotation the results of the code
converge to the solution for the fully developed state.

The validity of our results for the non-rotating case was
also evident from comparisons of values of f � Re with the

exact analytical solutions of Tiedt (1966, 1967) where the
agreement in all cases was within 0.13% whereas Manglik and
Fang's (1995) results show an increasing discrepancy with in-
creasing e and decreasing j, to values as high as ÿ3.7% for
e � 0:6, j � 0:5 and ÿ13.7% for e � 0:6, j � 0:25 (Manglik
and Fang reported no results for higher values of e). Manglik
and Fang attribute the increasing numerical errors with in-

Table 2

Computed variation of frictional pressure loss f � Re with radius ratio j, Taylor number Ta and eccentricity e (values for Ta � 0, j � 0:2 and 0.8,

e 6� 0:98, from Tiedt, 1967)

j � 0:2

Ta e� 0.2 0.3 0.4 0.5 0.6 0.7

0 22.093 20.985 19.641 18.197 16.760 15.407

100 22.125 21.039 19.706 18.256 16.803 15.431

1000 22.327 21.397 20.151 18.682 17.111 15.587

2500 22.518 21.758 20.638 19.181 17.498 15.800

5000 22.688 22.096 21.124 19.717 17.945 16.068

10 000 22.860 22.449 21.655 20.332 18.491 16.438

50 000 23.267 23.303 22.943 21.788 19.775 17.547

Ta 0.8 0.85 0.9 0.95 0.98

0 14.181 13.625 13.105 12.625 12.356

100 14.193 13.636 13.124 12.657 12.400

1000 14.255 13.699 13.235 12.874 12.712

2500 14.350 13.799 13.407 13.184 13.148

5000 14.493 13.952 13.640 13.598 13.714

10 000 14.741 14.222 14.019 14.195 14.497

50 000 15.944 15.540 15.486 15.879 16.335

j � 0:5

Ta e� 0.2 0.3 0.4 0.5 0.6 0.7

0 22.517 21.117 19.439 17.655 15.895 14.244

100 22.629 21.282 19.619 17.804 15.993 14.292

1000 23.088 22.091 20.605 18.686 16.560 14.545

2500 23.396 22.703 21.454 19.555 17.196 14.879

5000 23.600 23.140 22.137 20.344 17.849 15.308

10 000 23.800 23.568 22.804 21.149 18.603 15.917

50 000 24.277 24.585 24.470 22.758 20.236 17.782

Ta 0.8 0.85 0.9 0.95 0.98

0 12.745 12.059 11.414 10.811 10.468

100 12.780 12.106 11.489 10.929 10.618

1000 12.956 12.375 11.944 11.649 11.539

2500 13.207 12.713 12.449 12.383 12.416

5000 13.558 13.126 12.994 13.119 13.287

10 000 14.093 13.709 13.703 14.005 14.275

50 000 16.115 15.744 15.893 16.631 17.188

j � 0:8
Ta e� 0.2 0.3 0.4 0.5 0.6 0.7

0 22.631 21.146 19.367 17.480 15.622 13.882

100 22.687 21.238 19.468 17.559 15.667 13.901

1000 23.041 21.834 20.149 18.121 15.989 14.038

2500 23.344 22.405 20.878 18.786 16.408 14.243

5000 23.597 22.912 21.602 19.527 16.933 14.540

10 000 23.824 23.400 22.361 20.396 17.650 15.018

50 000 24.298 24.425 23.936 22.258 19.573 16.872

Ta 0.8 0.85 0.9 0.95 0.98

0 12.304 11.581 10.903 10.277 9.859

100 12.328 11.623 10.975 10.381 10.049

1000 12.489 11.892 11.405 11.016 10.823

2500 12.701 12.192 11.858 11.645 11.567

5000 12.981 12.566 12.364 12.325 12.360

10 000 13.403 13.073 13.028 13.216 13.396

50 000 15.078 14.865 15.383 16.642 17.644
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creasing e and decreasing j to a lack of orthogonality in their
mesh.

In Fig. 3 we validate our calculations for the in¯uence of
rotation on frictional pressure drop against the data of Ooms
and Kampman-Reinhartz (1996) for e � 0:5, j � 0:5. As in
their paper, we present the results in the form of the ratio of
f � Re to the value for Ta � 0 (i.e. f/f0). The level of agreement
with the experimental data is clearly very good and far better
than for the curve representing the calculations of Ooms and
Kampman-Reinhartz.

In Fig. 4(a) and (b) we compare our calculations with the
measured velocity pro®les of Escudier and Gouldson (1997)
for Ta � 3000 which corresponds to U=xRI � 1. The exact
values of the parameters for these experiments are listed in
Table 1. As with the case for Ta � 0, the agreement for the
axial component of velocity is exceptionally good whilst the
discrepancies for the tangential component are small and at-
tributable to the experiments rather than the numerical cal-
culations. We shall discuss in more detail later the calculated
¯ow behaviour, but note at this point that with increasing
eccentricity the axial velocity distributions are increasingly
distorted due to the inner cylinder rotation: the positions of the
peak velocities in the wide and narrowing gaps (sectors A and
B) move towards the inner cylinder whilst that for the wid-
ening gap (sector D) moves outward. These changes in pro®le
shape are responsible for increases in the f � Re values and, as
will be seen shortly, eventually dominate over the tendency for
f � Re to decrease with increasing eccentricity. Both the ex-
perimental data and the numerical calculations con®rm the
occurrence of separation, reattachment and recirculation in the
cross¯ow plane found previously in the absence of bulk
through¯ow by Kamal (1966), Ballal and Rivlin (1976), San
Andres and Szeri (1984) and Siginer and Bakhtiyarov (1998).

4. Results of numerical calculations

Detailed calculations have been carried out for radius ratios
of 0.2, 0.5 and 0.8 covering eccentricities up to 0.98 and Taylor
numbers up to 50 000. The principal outcome of this investi-
gation is represented by the variations in f � Re with j, e and
Ta shown in Fig. 5 and tabulated in Table 2. The results for
j � 0:5 are also given in Fig. 6 in the form f/f0 where f0 indi-
cates the value of f for zero rotation, all other factors re-
maining the same. For a given radius ratio, as the Taylor
number is increased from zero, the value of f � Re at any ec-
centricity is increased with the relative increase (above the
values for Ta � 0) passing through a maximum for e � 0:5 and
a minimum for e � 0:75 (Fig. 5). An unexpected feature of the
results is that for Taylor numbers in excess of about 5000, the
f � Re values fall to a minimum for e� 0.9 and then show an
increase, a trend which has not been revealed in previous ex-
perimental and theoretical work. Some of the changes in f � Re
are in fact evident in the numerical calculations reported by
Ooms and Kampman-Reinhartz (1996) though they conclude
that f passes through a maximum (at e � 0:5 for j � 0:6 and
Ta � 1800) and then decreases with increase in e even though
their perturbation analysis reveals a minimum in f =f0 at
e � 0:75. Manglik's (1998) calculations suggest that f � Re
reaches an asymptote as e approaches one but, as reported by
Manglik and Fang (1995), due to their grid con®guration the
results are subject to increasing numerical error as e increases
above about 0.8.

To assist in the interpretation of the results for f � Re we
shall refer to the corresponding cross¯ow streamlines, to the
distributions of axial velocity and the shear stress on the sur-
faces of the inner and outer cylinders, and to the tangential
¯owrate. Since the qualitative in¯uence of e and Ta on f � Re

for e < 0:8 is the same for each of the three radius ratios for
which calculations were performed, we shall base the discus-
sion on the results for j � 0:5. The detailed ¯ow behaviour for
j � 0:2 is signi®cantly di�erent from that for j � 0:5 and 0.8
at eccentricities above about 0.8 and is discussed separately.
Axial velocity isovels and cross¯ow streamlines for j � 0:5 and
Ta � 4200 covering eccentricities of 0.2, 0.7 and 0.95 are shown
in Fig. 7 and the corresponding distributions of the axial
component of the shear stress for the full range of e in Fig. 10.

For a ®xed rotation speed, at low eccentricity (up to about
0.3) the cross¯ow streamlines are slightly distorted (Fig. 7 (a))
and tangential ¯ow around the annulus is slightly reduced by
the blockage e�ect associated with the eccentricity, thereby
countering the tendency for the axial velocity peak to move in
the sense of rotation into the narrowing gap. There is also a
slight radial displacement of the axial velocity peak towards the
inner cylinder which, in contrast to the angular displacement,
increases with the eccentricity. As the eccentricity is increased
above about 0.3, recirculation of the cross¯ow develops adja-
cent to the surface of the outer cylinder and is roughly centred
in the wide gap. With further increase in e the recirculation
occupies an increasing fraction of the annulus and increasingly
inhibits the tendency for ¯uid with high axial momentum to be
swept into the narrowing gap. Once e exceeds 0.7, the recircu-
lation has spread to such an extent (Fig. 7 (b)) that the angular
displacement of the axial velocity peak is reduced to near zero
and then becomes increasingly negative as e is further increased
(Fig. 7 (c)). Although we have highlighted the displacement of
the velocity peak, the entire ¯ow®eld is increasingly distorted as
the eccentricity and Taylor number are increased with the
magnitude of the axial velocity maximum progressively de-
creasing with increasing Ta whereas the angular and radial
displacements progressively increase at any given eccentricity.
The magnitude of the peak axial velocity passes through a
maximum for e � 0:6 (there is a slight in¯uence of Ta and a
greater one of j) when it is located in the wide gap.

An unexpected feature of the calculations for radius ratios
of 0.5 and 0.8, but not seen for j � 0:2, is the appearance of a

Fig. 6. Variation of ratio of friction factor with and without rotation

f/f0 with eccentricity e and Taylor number Ta (parameter on curves) for

radius ratio j � 0:5.
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second peak in the axial velocity, located in the narrowing gap,
for combinations of very high eccentricities and Taylor num-
bers. For example, for j � 0:5 a second peak is found for

e � 0:98 and Ta � 10000, for e � 0:9 and Ta � 25000, and for
e � 0:85 and Ta � 50000. The emergence and growth of the
second peak is illustrated in Fig. 8 for j � 0:5, Ta � 50000,

Fig. 7. (i) Axial velocity isovels �u��r;/� and (ii) cross¯ow streamlines �w��r;/� for radius ratio j � 0:5 and Taylor number Ta � 4200 for increasing

eccentricity (a) e � 0:2; (b) e � 0:7; (c) e � 0:95.
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e � 0:8, 0.85 and 0.98. As can be seen from the cross¯ow
streamlines, the location of the new axial velocity peak is
practically coincident with the eye of the recirculating eddy

which has also moved into the narrowing gap at these high
values of e and Ta. This second peak in the axial velocity be-
comes stronger than the ®rst as e is increased but located

Fig. 8. (i) Axial velocity isovels �u��r;/� and (ii) cross¯ow streamlines �w ��r;/� for radius ratio j � 0:5 and high Taylor number Ta � 50000 at high

values of eccentricity (a) e � 0:8; (b) e � 0:85; (c) e � 0:98.
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further from the inner cylinder. Under these conditions a
second region of recirculating cross¯ow emerges in the wid-
ening gap close to the surface of the outer cylinder (Fig. 8(c)).
The behaviour for j � 0:2 is quite di�erent: no second maxi-
mum occurs and the peak in axial velocity moves back into the
narrowing gap as Ta is increased, as can be seen in Fig. 9.

The distortions of the axial velocity distribution and the
movement of the peak axial velocity, due to the combined
e�ects of eccentricity and rotation result in the distributions of
the axial component of the surface shear stress shown in Fig.
10 for j � 0:5, Ta � 4200. In order to reveal the relative con-
tributions to f, the shear stress on the surface of the inner
cylinder sSI

has been weighted by RI and that on the outer
cylinder sSO

by RO. The response of the distributions of both
sSO

and sSI
to increased eccentricity is similar. Each initially has

a maximum in the narrowing gap and a minimum in the
widening gap. With increasing eccentricity the maxima move
against the sense of rotation decreasing in magnitude until
e� 0.75 (sSI

) or 0.85 (sSO
) after which the magnitude increases.

The minima also move against the sense of rotation towards
the narrow gap and decrease monotonically to zero as e ap-
proaches one. The distribution of sSI

remains roughly sym-
metrical with respect to / as e increases whereas sSO

is
increasingly skewed towards the narrow gap. The increase in
f � Re evident in Fig. 5 for the higher Taylor numbers as e
approaches one may be attributed to the increased levels of
shear stress in the widening gap.

Caution needs to be exercised in assessing the results of the
calculations reported here since it has been assumed
throughout that the critical Taylor number has not been ex-
ceeded. Although both an imposed through¯ow and eccen-
tricity are known to increase the critical Taylor number for any
given radius ratio the stability boundaries have yet to be cal-
culated for the combinations of e and j we consider here.
However, we note that the empirical expression given by
Lockett (1992) yields a critical value of 80 000 for Ta as e
approaches one, well above the maximum value (50 000) con-

sidered here. In addition, transition to turbulence at high
Taylor and Reynolds numbers must also limit the general
validity of our results.

5. Concluding remarks

On the basis of the discussion of the various e�ects on
f � Re, it is convenient to separate the di�erences in ¯ow be-
haviour for low, high and intermediate values of eccentricity.

For e < 0:3 the ¯ow is rotation dominated. f � Re remains
approximately constant with e, or may even increase above the
non-rotating concentric value. The main e�ect here is for ¯uid
to be dragged around the annulus by rotation of the inner
cylinder thereby advecting the peak velocity from the wide gap
into the narrowing gap. The axial gradient is increased in the
vicinity of both the inner and outer cylinders thereby inducing
higher values of f � Re. The maxima in sSI

and sSO
for e < 0:3

are located in the narrowing gap.
In the intermediate regime, 0:3 < e < 0:8, the curve of f � Re

versus e shows the ``normal'' (i.e. without rotation) trend of
reduction in friction with increased eccentricity. In this regime
the secondary recirculation progressively develops and begins
to move the location of maximum axial velocity back into the
wide gap (but still with / > 0�). The resulting e�ect is to
generate axial-velocity isovels similar to those without rotation
and hence result in a reduction with e in the magnitude of the
maxima in sSI

and sSO
and so of f � Re.

The third regime �0:8 < e < 1� is recirculation dominated
and it is here that qualitatively new and unexpected behaviour
is observed. The location of peak velocity is advected by the
stronger recirculation into the widening gap region �/ < 0��
and then, as the ¯ow turns to close the recirculating eddy, is
forced toward the ``lower'' surface of the inner cylinder. This
produces high localised maxima of sSI

and then of sSO
(see Fig.

10 for / < ÿ90�) which reduces the tendency for f � Re to

Fig. 9. (i) Axial velocity isovels �u��r;/� and (ii) cross¯ow streamlines �w��r;/� for small radius ratio j � 0:2, high Taylor number Ta � 50000 and high

eccentricity e � 0:98.
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decrease with e and eventually induces an increase. Indeed, for
high Ta the axial velocity peak is so strongly advected towards
the lower side of the inner cylinder, where it generates a strong
rotation-directed layer, that two opposing e�ects act to create
two local peaks of the axial velocity distribution with corre-
sponding distortion of the isovels and an increase in f � Re,
neither feature observed hitherto either in calculations or ex-
periments.
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